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Part 1: Theoretical Overview
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» group of experts works on several tasks

* for each expert/task: observe success or failure

Questions:
Can we sort experts by quality and tasks by difficulty?

Can we recover the probability of experts succeeding on tasks”?
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» rankings & of experts and # of tasks exist such that
Mi; = Ny j) for a bi-isotonic matrix N

« N bi-isotonic: each row and column is decreasing
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e Y:n X d observation matrix
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Assumptions: 0.5
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» rankings & of experts and # of tasks exist such that
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« N bi-isotonic: each row and column is decreasing
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e n: number of experts, d: number of tasks

e Y:n X d observation matrix
M = E[Y] € [0,1]™

Assumptions: 0.5
» 1-sub-Gaussian noise W;; such that ¥;; = M;; + W, 1 1 0 0
» rankings 7 of experts and 7 of tasks exist such that L. 10

Mi; = Ny j) for a bi-isotonic matrix N

» N bi-isotonic: each row and column is decreasing T 0 11



Previous Work
Minimax Optimal Estimation [Mao et al., 2020)]

. focus on estimating M € C;'™ and reconstruction error E [HM(Y )—M H%]

* In Bernoulli model, have for any estimator M that

sup E ||V = MII3| 2 c(n v d)
MECPerm
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. least squares approach: MLS = argmiannggmHM —Y H% yields
— [WLS ~M| %] < ¢'log(nd*(n v d)
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Minimax Optimal Estimation [Mao et al., 2020)]

. focus on estimating M € C;'™ and reconstruction error E [HM(Y )—M H%]

* In Bernoulli model, have for any estimator M that

sup E ||V = MII3| 2 c(n v d)
MECPerm

Biso

. least squares approach: MLS = argmiannggmHM —Y H% yields
— [WLS ~M| %] < ¢'log(nd*(n v d)

e question: what about polynomial time estimators?
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Previous Work

Estimating the Permutation [Mao et al., 2020]

 meta algorithm:;

 first estimate 7 and 17 with (M, -1(;),,-1(7));.; € Cpiso PY 7 and 7]

° then (Ml]) — (Nﬁ'(l)f](])) with N & argmianeCBiSOHN, — (Yﬁ'_l(l)ﬁ_l(]))H%

. error decomposition [E [HM — MH%] < c(Z + &)

» £ corresponds to risk of least squares estimation in Cyg;

. #:=Fk [”(Mn—lam-l(j)) - (Mﬁ—lam-l(j))”%] +

= 2
[” (M-16p-10) = M1y DI F



Our Contribution
Optimality in Special Cases [G., Carpentier, Verzelen, 2024 +]

. for p, h € [0,1], estimate M € CY'"™n {p — h, p + h}"™ ¢ and in particular
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Our Contribution
Optimality in Special Cases [G., Carpentier, Verzelen, 2024 +]

. for p, h € [0,1], estimate M € CY'"™n {p — h, p + h}"™ ¢ and in particular

Biso
the unknown, underlying rankings 7 and #

« main result: polynomial time algorithm that yields (7, #) such that

P < ¢ (log(ndy’*(n v d) A ndh?)

>p+h
* remark: algorithm designed for the more
general problem of level set estimation



Summary of Part 1

« conjectured computational-statistical gaps for estimating M &€ Cg‘;’ggl

. least-squares estimator with rate log(nd)*(n Vv d), but polynomial-time?

* polynomial-time estimators so far:
. rate log(nd)*(n v d)(n A d)""* achieved by [Mao et al., 2020]

 Improved rate n'0*t°Win the case n = d by [Liu and Moitra, 2020]

» our algorithm is optimal for special instances of the problem (and for the
problem of level set estimation)



Part 2: Algorithmic ldeas for
Expert Ranking



Row Sums
A Simple Global Approach

e recall:

* T, 1 unknown permutations
° Ml] — N]Z'(Z)V](]) = {p — h,p + h} with N & CBiSO
. Vi = M;;+ W with W, 1-sub-Gaussian

 bi-isotonicity of NV implies
(i) < n(i") = Mij > Ml-y Vj e [d]

d
sort according to y; 1= Z &
J=1



Row Sums
A Simple Global Approach

e recall: J

e T, § unknown permutations

—————-
« My = Nyiyj € P — hp+hpwith N € Cgyg, p+h
. Vi = M;;+ W with W, 1-sub-Gaussian
p—h
«—>

 bi-isotonicity of NV implies
(i) < n(i") = Mij > Ml-y Vj e [d]

I

d
sort according to y; 1= Z &
j=1 signal 2rh vs. noise of order \/c_i



Partial Row Sums
Reducing the Noise by Reducing the Tasks

« focus on smaller group of experts E C [n] _

» only some tasks O * (E) relevant for
comparison
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Partial Row Sums

Reducing the Noise by Reducing the Tasks 0 * (E)

« focus on smaller group of experts E C [n] _

» only some tasks O * (E) relevant for ; ;
comparison L

. noise of ordery/ | O * (E) | instead of \ﬁz’

» problem: cannot access Q * (E) directly




Trisection

Refining sets of Experts based on Partial Row Sums

» we want to partition sets £ C |n] into
trisection (O, P, I)

e O: experts “better” than the median expert i
» P: experts we cannot distinguish from i E

. [ experts “worse” than i

» split based on partial row sums over sets
related to Q * (E)



The Sorting Tree

Hierarchical Sorting Based on Trisections

o start by trisecting |n]
o inductively obtain partitions & of [n]
e trisect each £ € & until:

« [ is sufficiently small

e () *(FE) is sufficiently small

« £ = P from some previous trisection (O, P, I)




Summary of Part 2

» sorting based on global row sums in general lacks precision

* hierarchical sorting allows us to reduce the global sorting problem into
multiple local sorting problem

* for local sorting, less tasks are relevant, so we reduce the noise



References

 Cheng Mao, Ashwin Pananjady, and Martin J. Wainwright. "Towards optimal
estimation of bivariate isotonic matrices with unknown permutations.” The
Annals of Statistics 48.6, 2020.

e Allen Liu, and Ankur Moitra. "Better algorithms for estimating non-parametric
models in crowd-sourcing and rank aggregation.” Conference on Learning
Theory. PMLR, 2020.

M. G., Alexandra Carpentier, and Nicolas Verzelen. "Optimal level set
estimation for non-parametric tournament and crowdsourcing problems."

arXiv preprint arXiv:2408.15356, 2024.






