Permutation Estimation for Crowdsourcing joint work with Alexandra Carpentier and Nicolas Verzelen

Maximilian Graf, Universität Potsdam, 11 March 2025 supported by the DFG research unit FOR 5381

Part 1: Theoretical Overview

Notivating Example

of people, typically using the internet" - www.oxfordlearnersdictionaries.com

Crowdsourcing: "the activity of getting information or help for a project or a task from a large number

Notivating Example

Crowdsourcing: "the activity of getting information or help for a project or a task from a large number of people, typically using the internet" — www.oxfordlearnersdictionaries.com

- group of experts works on several tasks
- for each expert/task: observe success or failure \bullet

Notivating Example

Crowdsourcing: "the activity of getting information or help for a project or a task from a large number of people, typically using the internet" — www.oxfordlearnersdictionaries.com

- group of experts works on several tasks
- for each expert/task: observe success or failure

Questions:

Can we sort experts by quality and tasks by difficulty?

Can we recover the probability of experts succeeding on tasks?

- *n*: number of experts, *d*: number of tasks
- $Y: n \times d$ observation matrix $M = \mathbb{E}[Y] \in [0,1]^{n \times d}$

- *n*: number of experts, *d*: number of tasks
- $Y: n \times d$ observation matrix $M = \mathbb{E}[Y] \in [0,1]^{n \times d}$

Assumptions:

- 1-sub-Gaussian noise W_{ij} such that X_{ij}
- rankings π of experts and η of tasks exist such that $M_{ij} = N_{\pi(i)\eta(j)}$ for a bi-isotonic matrix N
- N bi-isotonic: each row and column is decreasing

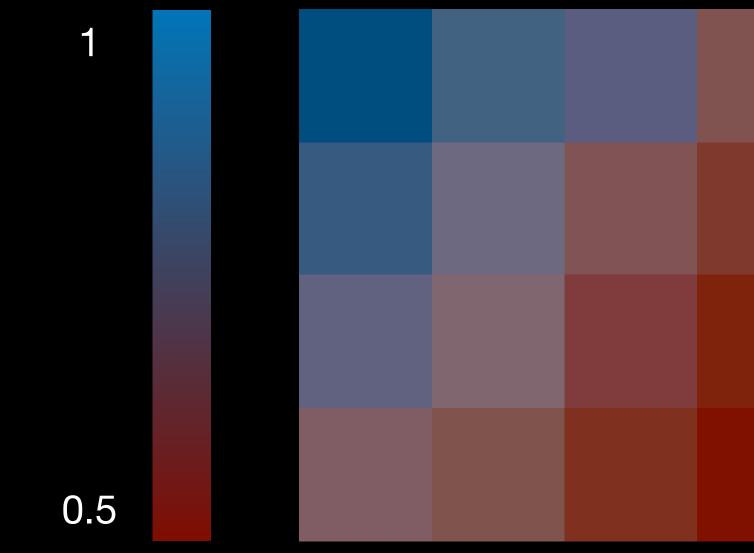
$$Y_{ij} = M_{ij} + W_{ij}$$

- *n*: number of experts, *d*: number of tasks
- $Y: n \times d$ observation matrix $M = \mathbb{E}[Y] \in [0,1]^{n \times d}$

Assumptions:

- 1-sub-Gaussian noise W_{ii} such that X_{ii}
- rankings π of experts and η of tasks exist such that $M_{ij} = N_{\pi(i)\eta(j)}$ for a bi-isotonic matrix N
- N bi-isotonic: each row and column is decreasing

$N \in [0,1]^{n \times d}$ bi-isotonic: $N \in \mathbb{C}_{Biso}$



$$Y_{ij} = M_{ij} + W_{ij}$$

- *n*: number of experts, *d*: number of tasks
- $Y: n \times d$ observation matrix $M = \mathbb{E}[Y] \in [0,1]^{n \times d}$

Assumptions:

- 1-sub-Gaussian noise W_{ii} such that
- rankings π of experts and η of tasks exist such that $M_{ij} = N_{\pi(i)\eta(j)}$ for a bi-isotonic matrix N
- N bi-isotonic: each row and column is decreasing

$M \in [0,1]^{n \times d}$ bi-isotonic up to row-/ column-permutation: $M \in \mathbb{C}_{Biso}^{Perm}$

$$Y_{ij} = M_{ij} + W_{ij}$$

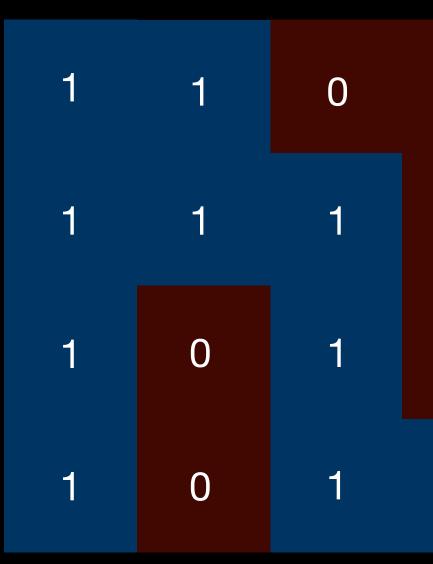
- *n*: number of experts, *d*: number of tasks
- $Y: n \times d$ observation matrix $M = \mathbb{E}[Y] \in [0,1]^{n \times d}$

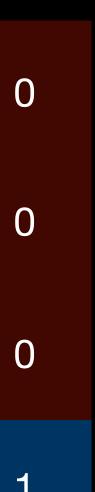
Assumptions:

- 1-sub-Gaussian noise W_{ii} such that Y
- rankings π of experts and η of tasks exist such that $M_{ij} = N_{\pi(i)\eta(j)}$ for a bi-isotonic matrix N
- N bi-isotonic: each row and column is decreasing

Y noisy version of
$$M$$
:
here $Y_{ij} = \text{Bern}(M_{ij})$
1

$$Y_{ij} = M_{ij} + W_{ij}$$





Previous Work Minimax Optimal Estimation [Mao et al., 2020]

- in Bernoulli model, have for any estimator \hat{M} that $\sup_{M \in \mathbb{C}^{\text{Perm}}_{\text{Biso}}} \mathbb{E} \left[\|\hat{M} - M\|_F^2 \right] \ge c(n \lor d)$
- least squares approach: $\hat{M}_{LS} \in \operatorname{argmin}_{M' \in \mathbb{C}^{\operatorname{Perm}}_{\operatorname{Biso}}} \|M' Y\|_F^2$ yields $\mathbb{E} \| \hat{M}_{\mathrm{LS}} - M \|_{F}^{2} \le c' \log(nd)^{2} (n \lor d)$

• focus on estimating $M \in \mathbb{C}_{\text{Biso}}^{\text{Perm}}$ and reconstruction error $\mathbb{E} \| \hat{M}(Y) - M \|_F^2$

Previous Work Minimax Optimal Estimation [Mao et al., 2020]

- in Bernoulli model, have for any estimator \hat{M} that $\sup_{M \in \mathbb{C}^{\text{Perm}}_{\text{Biso}}} \mathbb{E} \left[\|\hat{M} - M\|_F^2 \right] \ge c(n \lor d)$
- least squares approach: $\hat{M}_{LS} \in \operatorname{argmin}_{M' \in \mathbb{C}^{\operatorname{Perm}}_{\operatorname{Biso}}} \|M' Y\|_F^2$ yields $\mathbb{E} \| \hat{M}_{\mathrm{LS}} - M \|_{F}^{2} \le c' \log(nd)^{2} (n \lor d)$
- question: what about polynomial time estimators?

• focus on estimating $M \in \mathbb{C}_{\text{Biso}}^{\text{Perm}}$ and reconstruction error $\mathbb{E} \| \hat{M}(Y) - M \|_F^2$

Previous Work Estimating the Permutation [Mao et al., 2020]

- meta algorithm:
 - first estimate π and η with $(M_{\pi^{-1}(i)\eta^{-1}})$
 - then $(\hat{M}_{ij}) = (\hat{N}_{\hat{\pi}(i)\hat{\eta}(j)})$ with $\hat{N} \in arg$

$$\begin{split} g_{1(j)}_{i,j} \in \mathbb{C}_{\text{Biso}} \text{ by } \hat{\pi} \text{ and } \hat{\eta} \\ g_{N' \in \mathbb{C}_{\text{Biso}}} \| N' - (Y_{\hat{\pi}^{-1}(i)\hat{\eta}^{-1}(j)}) \|_F^2 \end{split}$$

Previous Work Estimating the Permutation [Mao et al., 2020]

- meta algorithm:

• first estimate
$$\pi$$
 and η with $(M_{\pi^{-1}(i)\eta^{-1}(j)})_{i,j} \in \mathbb{C}_{\text{Biso}}$ by $\hat{\pi}$ and $\hat{\eta}$
• then $(\hat{M}_{ij}) = (\hat{N}_{\hat{\pi}(i)\hat{\eta}(j)})$ with $\hat{N} \in \operatorname{argmin}_{N' \in \mathbb{C}_{\text{Biso}}} ||N' - (Y_{\hat{\pi}^{-1}(i)\hat{\eta}^{-1}(j)})||_F^2$
error decomposition $\mathbb{E}\left[||\hat{M} - M||_F^2 \right] \le c(\mathscr{L} + \mathscr{P})$

- - \mathscr{L} corresponds to risk of least squares estimation in $\mathbb{C}_{\mathrm{Biso}}$

•
$$\mathscr{P} := \mathbb{E} \left[\| (M_{\pi^{-1}(i)\eta^{-1}(j)}) - (M_{\hat{\pi}^{-1}(i)\eta^{-1}(j)}) \|_{F}^{2} \right] + \mathbb{E} \left[\| (M_{\pi^{-1}(i)\eta^{-1}(j)}) - (M_{\pi^{-1}(i)\hat{\eta}^{-1}(j)}) - (M_{\pi^{-1}(i)\hat{\eta}^{-1}(j)}) - (M_{\pi^{-1}(i)\hat{\eta}^{-1}(j)}) \right]$$

Our Contribution **Optimality in Special Cases** [G., Carpentier, Verzelen, 2024+]

the unknown, underlying rankings π and η

• for $p, h \in [0,1]$, estimate $M \in \mathbb{C}^{\text{Perm}}_{\text{Biso}} \cap \{p-h, p+h\}^{n \times d}$ and in particular

Our Contribution Optimality in Special Cases [G., Carpentier, Verzelen, 2024+]

- the unknown, underlying rankings π and η
- main result: polynomial time algorithm that yields $(\hat{\pi}, \hat{\eta})$ such that $\mathscr{P} \leq c \left(\log(nd)^{5/2} (n \lor d) \land ndh^2 \right)$

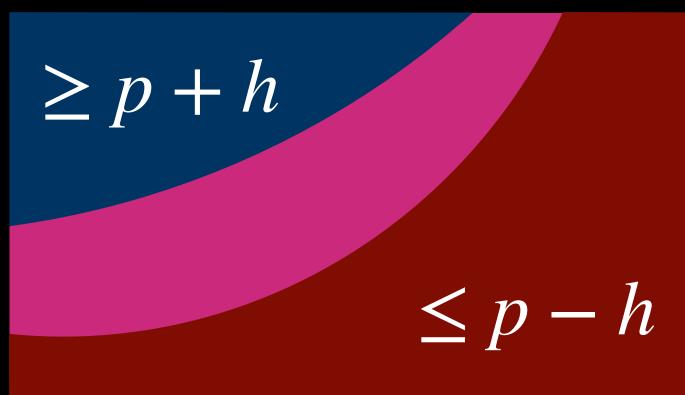
• for $p, h \in [0,1]$, estimate $M \in \mathbb{C}^{\text{Perm}}_{\text{Biso}} \cap \{p-h, p+h\}^{n \times d}$ and in particular

Our Contribution Optimality in Special Cases [G., Carpentier, Verzelen, 2024+]

- the unknown, underlying rankings π and η
- main result: polynomial time algorithm that yields $(\hat{\pi}, \hat{\eta})$ such that $\mathscr{P} \le c \left(\log(nd)^{5/2} (n \lor d) \land ndh^2 \right)$

remark: algorithm designed for the more general problem of level set estimation

• for $p, h \in [0,1]$, estimate $M \in \mathbb{C}^{\text{Perm}}_{\text{Biso}} \cap \{p-h, p+h\}^{n \times d}$ and in particular



Summary of Part 1

- polynomial-time estimators so far:
 - rate $\log(nd)^2(n \lor d)(n \land d)^{1/4}$ achieved by [Mao et al., 2020]
 - improved rate $n^{7/6+o(1)}$ in the case n = d by [Liu and Moitra, 2020]
- our algorithm is optimal for special instances of the problem (and for the problem of level set estimation)

• conjectured computational-statistical gaps for estimating $M \in \mathbb{C}_{Biso}^{Perm}$ • least-squares estimator with rate $log(nd)^2(n \lor d)$, but polynomial-time?

Part 2: Algorithmic Ideas for Expert Ranking

Row Sums **A Simple Global Approach**

- recall:
 - π , η unknown permutations

•
$$M_{ij} = N_{\pi(i)\eta(j)} \in \{p-h, p+h\}$$
 with

- $Y_{ij} = M_{ij} + W_{ij}$ with W_{ij} 1-sub-Gaussian
- bi-isotonicity of *N* implies $\pi(i) \le \pi(i') \Rightarrow M_{ij} \ge M_{i'j} \qquad \forall j \in [d]$

dsort according to $y_i := \sum_{j=1}^{N} Y_{ij}$

$N \in \mathbb{C}_{\text{Biso}}$

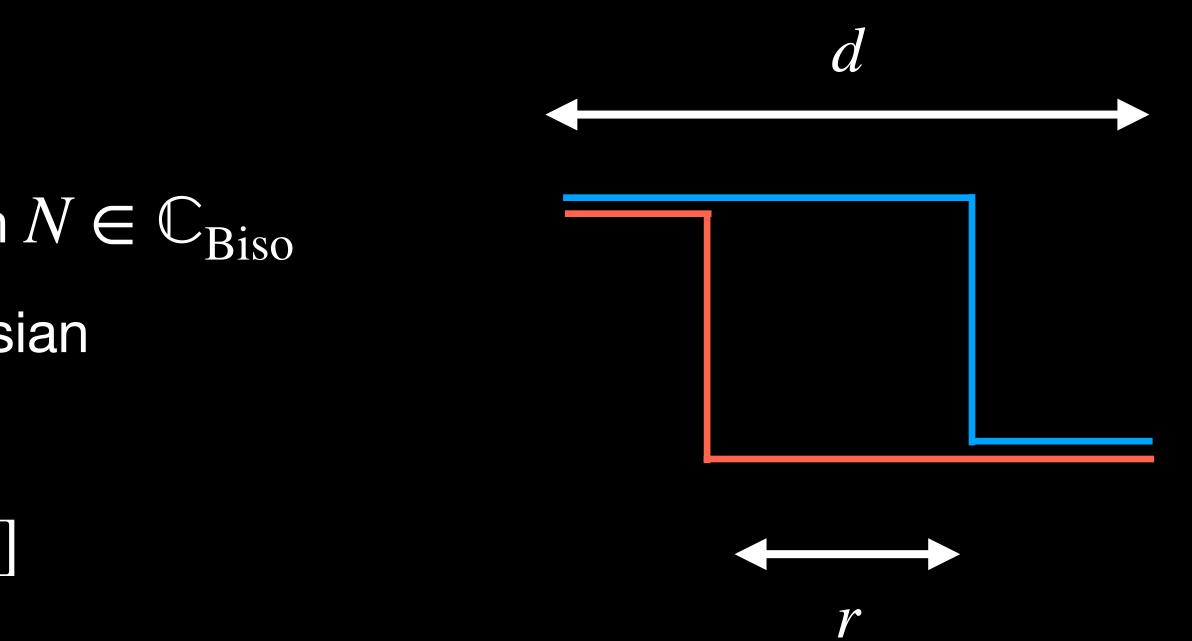
Row Sums A Simple Global Approach

- recall:
 - π , η unknown permutations

•
$$M_{ij} = N_{\pi(i)\eta(j)} \in \{p-h, p+h\}$$
 with

- $Y_{ij} = M_{ij} + W_{ij}$ with W_{ij} 1-sub-Gaussian
- bi-isotonicity of N implies $\pi(i) \le \pi(i') \Rightarrow M_{ij} \ge M_{i'j} \quad \forall j \in [d]$

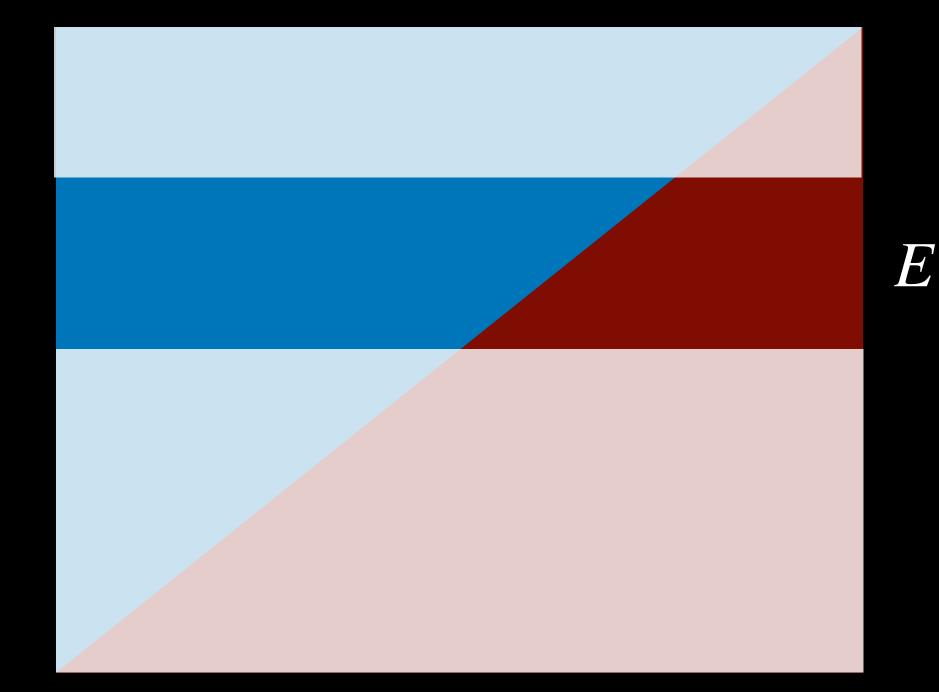
sort according to $y_i := \sum_{j=1}^{a} Y_{ij}$



signal 2rh vs. noise of order \sqrt{d}

Partial Row Sums **Reducing the Noise by Reducing the Tasks**

- focus on smaller group of experts $E \subseteq [n]$
- only some tasks $Q^*(E)$ relevant for comparison



Partial Row Sums **Reducing the Noise by Reducing the Tasks**

- focus on smaller group of experts $E \subseteq [n]$
- only some tasks $Q^*(E)$ relevant for comparison
- noise of order $\sqrt{|Q^*(E)|}$ instead of \sqrt{d}

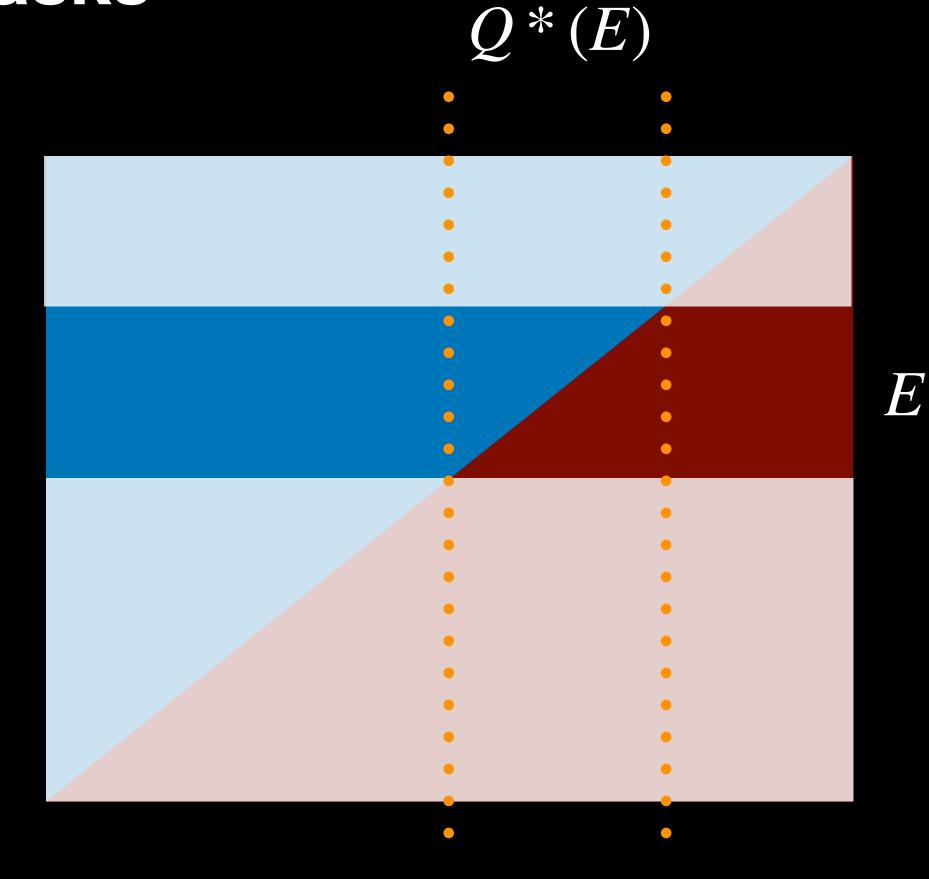
)))

 $Q^{*}(E)$

E

Partial Row Sums **Reducing the Noise by Reducing the Tasks**

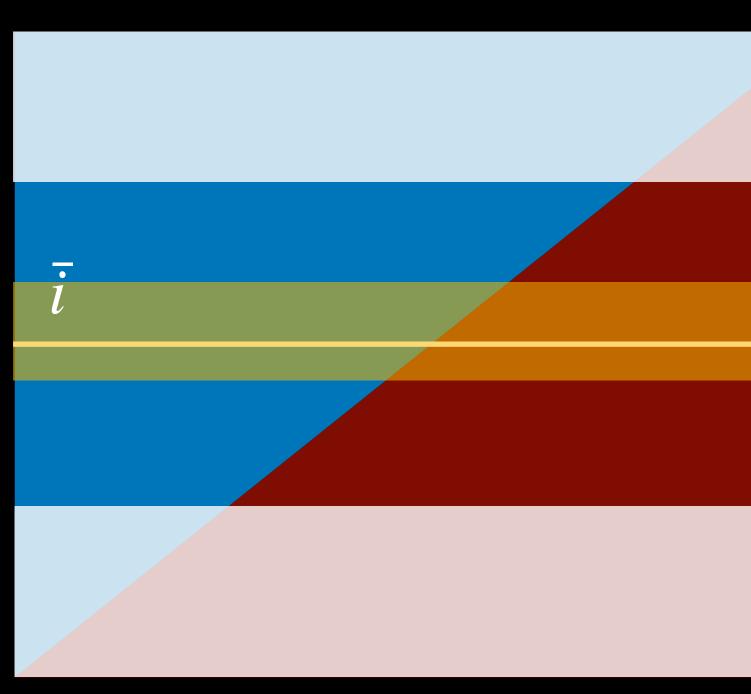
- focus on smaller group of experts $E \subseteq [n]$
- only some tasks $Q^*(E)$ relevant for comparison
- noise of order $\sqrt{|Q^*(E)|}$ instead of \sqrt{d}
- **problem:** cannot access $Q^*(E)$ directly

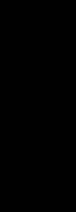


Tisection Refining sets of Experts based on Partial Row Sums

- we want to partition sets $E \subseteq [n]$ into trisection (O, P, I)
 - O: experts "better" than the median expert i
 - P: experts we cannot distinguish from \overline{i}
 - I: experts "worse" than i
- split based on partial row sums over sets related to $Q^*(E)$

E

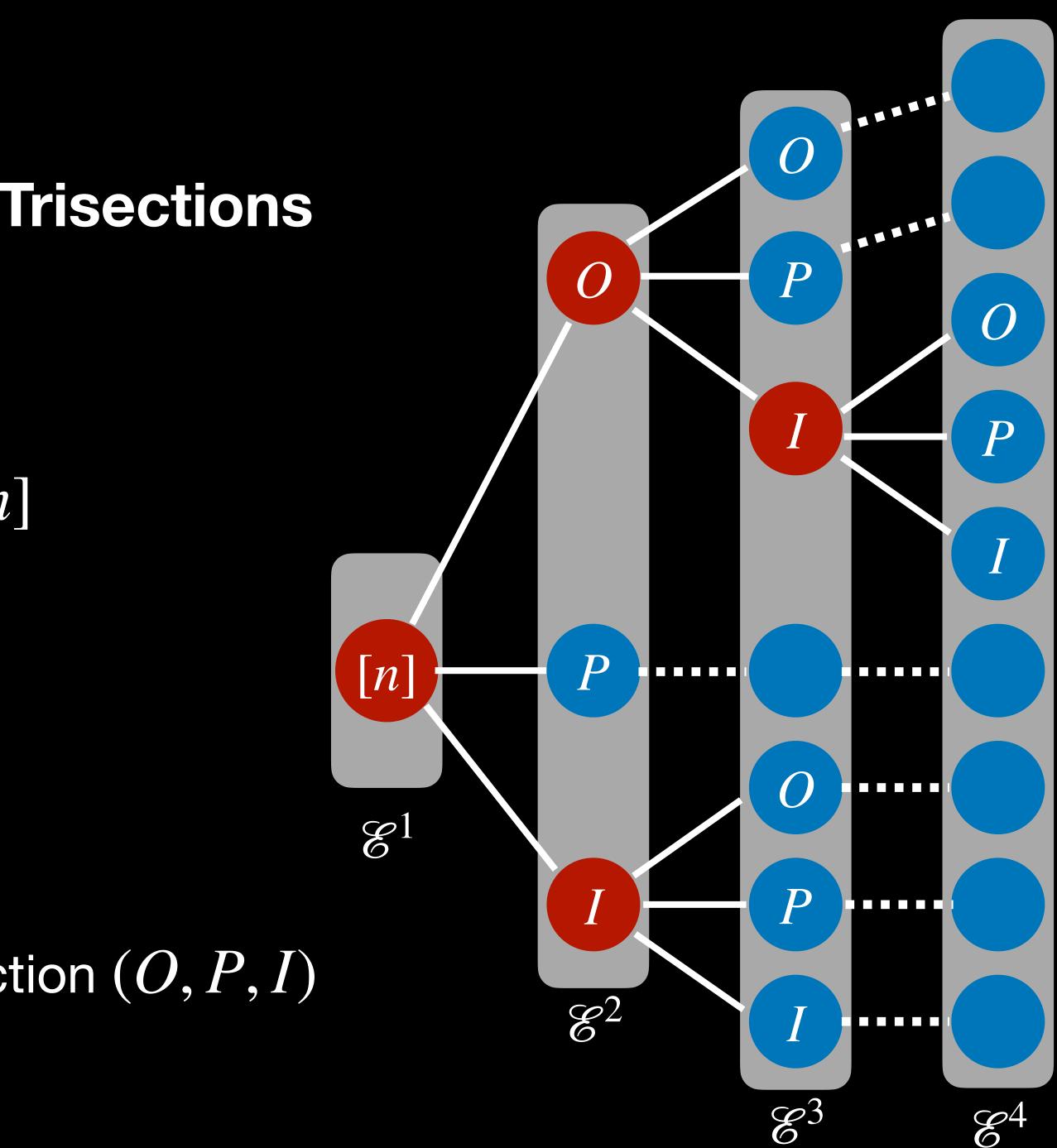




()

The Sorting Tree Hierarchical Sorting Based on Trisections

- start by trisecting [n]
- inductively obtain partitions \mathscr{E} of [n]
- trisect each $E \in \mathscr{E}$ until:
 - *E* is sufficiently small
 - $Q^*(E)$ is sufficiently small
 - E = P from some previous trisection (O, P, I)



Summary of Part 2

- sorting based on global row sums in general lacks precision
- hierarchical sorting allows us to reduce the global sorting problem into multiple local sorting problem
- for local sorting, less tasks are relevant, so we reduce the noise

References

- Annals of Statistics 48.6, 2020.
- Theory. PMLR, 2020.
- M. G., Alexandra Carpentier, and Nicolas Verzelen. "Optimal level set arXiv preprint arXiv:2408.15356, 2024.

 Cheng Mao, Ashwin Pananjady, and Martin J. Wainwright. "Towards optimal estimation of bivariate isotonic matrices with unknown permutations." The

• Allen Liu, and Ankur Moitra. "Better algorithms for estimating non-parametric models in crowd-sourcing and rank aggregation." Conference on Learning

estimation for non-parametric tournament and crowdsourcing problems."