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Motivating Example

• group of experts works on several tasks


• for each expert/task: observe success or failure

Questions: 

Can we sort experts by quality and tasks by difficulty?


Can we recover the probability of experts succeeding on tasks?
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Previous Work
Minimax Optimal Estimation [Mao et al., 2020]

• focus on estimating  and reconstruction error M ∈ ℂPerm
Biso 𝔼 [∥M̂(Y) − M∥2
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• in Bernoulli model, have for any estimator  that M̂

sup
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• question: what about polynomial time estimators? 
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• error decomposition 


•  corresponds to risk of least squares estimation in 


•  

𝔼 [∥M̂ − M∥2
F] ≤ c(ℒ + 𝒫)

ℒ ℂBiso

𝒫 := 𝔼 [∥(Mπ−1(i)η−1( j)) − (M ̂π−1(i)η−1( j))∥2
F] + 𝔼 [∥(Mπ−1(i)η−1( j)) − (Mπ−1(i) ̂η−1( j))∥2

F]
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Optimality in Special Cases [G., Carpentier, Verzelen, 2024+]

• for , estimate  and in particular 
the unknown, underlying rankings  and 

p, h ∈ [0,1] M ∈ ℂPerm
Biso ∩ {p − h, p + h}n×d

π η

• main result: polynomial time algorithm that yields  such that ( ̂π, ̂η)
𝒫 ≤ c (log(nd)5/2(n ∨ d) ∧ ndh2)

• remark: algorithm designed for the more  
general problem of level set estimation

≤ p − h

≥ p + h



Summary of Part 1

• conjectured computational-statistical gaps for estimating 


• least-squares estimator with rate , but polynomial-time?


• polynomial-time estimators so far:


• rate  achieved by [Mao et al., 2020]


• improved rate  in the case  by [Liu and Moitra, 2020]


• our algorithm is optimal for special instances of the problem (and for the 
problem of level set estimation)

M ∈ ℂPerm
Biso

log(nd)2(n ∨ d)

log(nd)2(n ∨ d)(n ∧ d)1/4

n7/6+o(1) n = d



Part 2: Algorithmic Ideas for 
Expert Ranking
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A Simple Global Approach
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d

r

p + h

p − h

signal  vs. noise of order 2rh d
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Partial Row Sums
Reducing the Noise by Reducing the Tasks

• focus on smaller group of experts E ⊆ [n]

• only some tasks  relevant for 
comparison

Q * (E)

• noise of order  instead of |Q * (E) | d

• problem: cannot access  directlyQ * (E)

E

Q * (E)



Trisection
Refining sets of Experts based on Partial Row Sums

• we want to partition sets  into 
trisection 


• : experts “better” than the median expert 


• : experts we cannot distinguish from 


• : experts “worse” than 


• split based on partial row sums over sets 
related to 

E ⊆ [n]
(O, P, I)

O i

P i

I i

Q * (E)

E i
O

P

I



The Sorting Tree
Hierarchical Sorting Based on Trisections

• start by trisecting  


• inductively obtain partitions  of 


• trisect each  until:


•  is sufficiently small 


•  is sufficiently small


•  from some previous trisection 

[n]

ℰ [n]

E ∈ ℰ

E

Q * (E)

E = P (O, P, I)

O

P

I

O

P

I

O

P

I

O

P

I

[n]

ℰ1

ℰ2

ℰ3 ℰ4



Summary of Part 2

• sorting based on global row sums in general lacks precision


• hierarchical sorting allows us to reduce the global sorting problem into 
multiple local sorting problem


• for local sorting, less tasks are relevant, so we reduce the noise
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