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• forest patches, divided into two unknown groups

• want to use biodiversity sensors to recover groups

• which sensors are informative? how can we allocate 

them efficiently?

Motivation 

• 𝐧 items, 𝐝 features

• mean value of 𝐣-th feature on 𝐢-th item as matrix 

entry 𝐌𝐢,𝐣

• Assumption: rows 𝐌𝐢,⋅ either equal 𝛍𝟎 or 𝛍𝟏

• gap vector 𝚫 ≔ 𝛍𝟏 − 𝛍𝟎 ∈ ℝ𝐝 ∖ 𝟎

• minimal group proportion

𝛉 =
𝐢:𝐌𝐢,⋅ = 𝛍𝟎 ∧ 𝐢:𝐌𝐢,⋅ = 𝛍𝟏

𝐧

• Goal: cluster items (𝐌𝐢,⋅ = 𝛍𝟎 vs 𝐌𝐢,⋅ = 𝛍𝟏)

Mathematical Model      

?

generating samples sequentially:

• can choose Indices 𝐈𝐭 ∈ [𝐧], 𝐉𝐭 ∈ [𝐝] at time 𝐭 = 𝟏, 𝟐, … 

• observe feedback 𝐗𝐭 = 𝐌𝐈𝐭,𝐉𝐭 + random noise

Goal: given 𝛅 > 𝟎, want adaptive sampling strategy to recover partitions with probability ≥ 𝟏 − 𝛅

à 𝛅-PAC algorithm BanditClustering 

Recovering the Groups through Sequential Sampling 
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Distribution-dependent control of the budget:
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with 𝚫 𝟏 ≥ 𝚫 𝟐 ≥ ⋯. With probability ≥ 𝟏 − 𝛅, 

BanditClustering recovers the true partition after 

𝐓 ≲ 𝐥𝐨𝐠 𝟏
𝛅
⋅ 𝐇 steps.

Matching minimax lower bound:

For any 𝛅-PAC algorithm 𝓐, we find a modification 𝐌/ 

of 𝐌 such that
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𝚫 being 𝐡 > 𝟎 in 𝐬 entries, 𝟎 in all others

with probability ≥ 𝟏 − 𝛅, BanditClustering 

recovers true partition in 𝐓 ≲ 𝐥𝐨𝐠 𝟏
𝛅
⋅ 𝐇 steps with
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𝟏
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𝐝
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Main Results 

Example: Two Values      

inspired by Sequential Halving 
for Best Arm Identification

subsample indices to find 
discriminative items/features

use informative feature for 
clustering step
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comparing BanditClustering and KMeans for 
varying 𝐬 and fix ∥ 𝚫 ∥𝟐, 𝐧, 𝐝, 𝛅 and 𝛉

performance of BanditClustering for varying 
𝐧, 𝐝 = 𝟏𝟎 ⋅ 𝐧 and fix 𝐬, 𝐡, 𝛅 and 𝛉
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